This commit is contained in:
		@@ -1,9 +1,10 @@
 | 
			
		||||
FROM python:3
 | 
			
		||||
 | 
			
		||||
ADD classification_service requirements.txt /classification_service/
 | 
			
		||||
ADD classification_service requirements.txt uwsgi.ini /classification_service/
 | 
			
		||||
WORKDIR /classification_service/
 | 
			
		||||
 | 
			
		||||
RUN pip3 install -r requirements.txt && pip3 install gunicorn
 | 
			
		||||
RUN pip3 install -r requirements.txt
 | 
			
		||||
 | 
			
		||||
USER 33
 | 
			
		||||
EXPOSE 8000
 | 
			
		||||
CMD ["gunicorn", "-b", "0.0.0.0:8000", "app:app"]
 | 
			
		||||
CMD ["uwsgi", "--ini", "uwsgi.ini"]
 | 
			
		||||
 
 | 
			
		||||
@@ -11,7 +11,6 @@ from utils import register_all_error_handlers
 | 
			
		||||
# import views
 | 
			
		||||
from views import ClassifyView
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Setup sentry
 | 
			
		||||
SENTRY_DSN = os.environ.get("SENTRY_DSN")
 | 
			
		||||
if SENTRY_DSN:
 | 
			
		||||
@@ -36,7 +35,6 @@ register_all_error_handlers(app)
 | 
			
		||||
for view in [ClassifyView]:
 | 
			
		||||
    view.register(app, trailing_slash=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# start debugging if needed
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    app.run(debug=True)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										91
									
								
								classification_service/mule.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								classification_service/mule.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,91 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
import sentry_sdk
 | 
			
		||||
import os
 | 
			
		||||
import requests
 | 
			
		||||
import tempfile
 | 
			
		||||
import numpy
 | 
			
		||||
import json
 | 
			
		||||
import pika
 | 
			
		||||
import uwsgi
 | 
			
		||||
 | 
			
		||||
from pyAudioAnalysis.audioTrainTest import load_model, load_model_knn, classifier_wrapper
 | 
			
		||||
 | 
			
		||||
SENTRY_DSN = os.environ.get("SENTRY_DSN")
 | 
			
		||||
if SENTRY_DSN:
 | 
			
		||||
    sentry_sdk.init(
 | 
			
		||||
        dsn=SENTRY_DSN,
 | 
			
		||||
        send_default_pii=True,
 | 
			
		||||
        release=os.environ.get('RELEASE_ID', 'test'),
 | 
			
		||||
        environment=os.environ.get('RELEASEMODE', 'dev')
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_classification(task):
 | 
			
		||||
    _, temp_model_name = tempfile.mkstemp()
 | 
			
		||||
    temp_means_name = temp_model_name + "MEANS"
 | 
			
		||||
 | 
			
		||||
    r = requests.get(f"http://model-service/model/{task['model']}/details")
 | 
			
		||||
    r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
    model_details = r.json()
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
 | 
			
		||||
        r = requests.get(f"http://model-service/model/{task['model']}")
 | 
			
		||||
        r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
        with open(temp_model_name, 'wb') as f:
 | 
			
		||||
            f.write(r.content)
 | 
			
		||||
 | 
			
		||||
        r = requests.get(f"http://model-service/model/{task['model']}?means")
 | 
			
		||||
        r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
        with open(temp_means_name, 'wb') as f:
 | 
			
		||||
            f.write(r.content)
 | 
			
		||||
 | 
			
		||||
        if model_details['type'] == 'knn':
 | 
			
		||||
            classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
 | 
			
		||||
                = load_model_knn(temp_model_name)
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
 | 
			
		||||
                = load_model(temp_model_name)
 | 
			
		||||
 | 
			
		||||
        feature_vector = (numpy.array(task['features']) - mean) / std
 | 
			
		||||
        class_id, probability = classifier_wrapper(classifier, model_details['type'], feature_vector)
 | 
			
		||||
 | 
			
		||||
    finally:  # bruuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuh
 | 
			
		||||
        try:
 | 
			
		||||
            os.remove(temp_model_name)
 | 
			
		||||
        except FileNotFoundError:
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            os.remove(temp_means_name)
 | 
			
		||||
        except FileNotFoundError:
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
    results = {
 | 
			
		||||
        "tag": task['tag'],
 | 
			
		||||
        "model": task['model'],
 | 
			
		||||
        "class_id": class_id,
 | 
			
		||||
        "probability": probability
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    connection = pika.BlockingConnection(pika.connection.URLParameters(os.environ['PIKA_URL']))
 | 
			
		||||
    channel = connection.channel()
 | 
			
		||||
    channel.exchange_declare(exchange=os.environ['PIKA_EXCHANGE'], exchange_type='fanout')
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
        message = uwsgi.mule_get_msg()
 | 
			
		||||
        task = json.loads(message)
 | 
			
		||||
        results = run_classification(task)
 | 
			
		||||
        channel.basic_publish(exchange=os.environ['PIKA_EXCHANGE'], routing_key='classification-result', body=results)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
@@ -1,26 +0,0 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import pika
 | 
			
		||||
from config import *
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
Rabbitmq setup
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
__author__ = '@tormakris'
 | 
			
		||||
__copyright__ = "Copyright 2020, Birbnetes Team"
 | 
			
		||||
__module_name__ = "rabbit"
 | 
			
		||||
__version__text__ = "1"
 | 
			
		||||
 | 
			
		||||
credentials = pika.PlainCredentials(RABBITMQ_USERNAME, RABBITMQ_PASSWORD)
 | 
			
		||||
rabbitmq = pika.BlockingConnection(pika.ConnectionParameters(host=RABBITMQ_HOST, credentials=credentials))
 | 
			
		||||
rabbitmq_channel = rabbitmq.channel()
 | 
			
		||||
rabbitmq_channel.exchange_declare(exchange=RABBITMQ_EXCHANGE, exchange_type='fanout')
 | 
			
		||||
    
 | 
			
		||||
"""Usage:
 | 
			
		||||
          from rabbit import rabbitmq_channel
 | 
			
		||||
 	      rabbitmq_channel.basic_publish(
 | 
			
		||||
            exchange=RABBITMQ_EXCHANGE,
 | 
			
		||||
            routing_key='feature',
 | 
			
		||||
            body=generated_tag)
 | 
			
		||||
"""
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
from flask import request, current_app, abort
 | 
			
		||||
from flask import request, abort
 | 
			
		||||
 | 
			
		||||
from functools import wraps
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,70 +1,15 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
import os
 | 
			
		||||
from flask import request, jsonify
 | 
			
		||||
from flask_classful import FlaskView
 | 
			
		||||
from utils import json_required
 | 
			
		||||
import requests
 | 
			
		||||
import tempfile
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from pyAudioAnalysis.audioTrainTest import load_model, load_model_knn, classifier_wrapper
 | 
			
		||||
import json
 | 
			
		||||
import uwsgi
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ClassifyView(FlaskView):
 | 
			
		||||
 | 
			
		||||
    @json_required
 | 
			
		||||
    def post(self):
 | 
			
		||||
 | 
			
		||||
        task = request.json  # tag, features, model
 | 
			
		||||
 | 
			
		||||
        _, temp_model_name = tempfile.mkstemp()
 | 
			
		||||
        temp_means_name = temp_model_name + "MEANS"
 | 
			
		||||
 | 
			
		||||
        r = requests.get(f"http://model-service/model/{task['model']}/details")
 | 
			
		||||
        r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
        model_details = r.json()
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
 | 
			
		||||
            r = requests.get(f"http://model-service/model/{task['model']}")
 | 
			
		||||
            r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
            with open(temp_model_name, 'wb') as f:
 | 
			
		||||
                f.write(r.content)
 | 
			
		||||
 | 
			
		||||
            r = requests.get(f"http://model-service/model/{task['model']}?means")
 | 
			
		||||
            r.raise_for_status()
 | 
			
		||||
 | 
			
		||||
            with open(temp_means_name, 'wb') as f:
 | 
			
		||||
                f.write(r.content)
 | 
			
		||||
 | 
			
		||||
            if model_details['type'] == 'knn':
 | 
			
		||||
                classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
 | 
			
		||||
                    = load_model_knn(temp_model_name)
 | 
			
		||||
 | 
			
		||||
            else:
 | 
			
		||||
                classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
 | 
			
		||||
                    = load_model(temp_model_name)
 | 
			
		||||
 | 
			
		||||
            feature_vector = (numpy.array(task['features']) - mean) / std
 | 
			
		||||
            class_id, probability = classifier_wrapper(classifier, model_details['type'], feature_vector)
 | 
			
		||||
 | 
			
		||||
        finally:  # bruuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuh
 | 
			
		||||
            try:
 | 
			
		||||
                os.remove(temp_model_name)
 | 
			
		||||
            except FileNotFoundError:
 | 
			
		||||
                pass
 | 
			
		||||
 | 
			
		||||
            try:
 | 
			
		||||
                os.remove(temp_means_name)
 | 
			
		||||
            except FileNotFoundError:
 | 
			
		||||
                pass
 | 
			
		||||
 | 
			
		||||
        # TODO: Publish to message queue
 | 
			
		||||
        results = {
 | 
			
		||||
            "class_id": class_id,
 | 
			
		||||
            "probability": probability
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        uwsgi.mule_msg(json.dumps(task))
 | 
			
		||||
        return jsonify({"status": "OK", "msg": "enqueued"})
 | 
			
		||||
 
 | 
			
		||||
@@ -5,6 +5,7 @@ marshmallow
 | 
			
		||||
Flask-Classful
 | 
			
		||||
sentry-sdk
 | 
			
		||||
pika
 | 
			
		||||
uwsgi
 | 
			
		||||
 | 
			
		||||
pyAudioanalysis
 | 
			
		||||
numpy
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user