initial commit
This commit is contained in:
87
cnn_classification_service/cnn_clasifier.py
Normal file
87
cnn_classification_service/cnn_clasifier.py
Normal file
@ -0,0 +1,87 @@
|
||||
from typing import Tuple
|
||||
import tempfile
|
||||
import os
|
||||
import os.path
|
||||
import shutil
|
||||
|
||||
import librosa
|
||||
import librosa.display
|
||||
import numpy
|
||||
import matplotlib.pyplot
|
||||
from keras.models import model_from_json
|
||||
from keras import optimizers
|
||||
from keras_preprocessing.image import ImageDataGenerator
|
||||
|
||||
|
||||
class Classifier(object):
|
||||
|
||||
def __init__(self, model_filename: str, weights_filename: str):
|
||||
with open(model_filename, 'r') as f:
|
||||
self.loaded_model = model_from_json(f.read())
|
||||
|
||||
self.loaded_model.load_weights(weights_filename)
|
||||
self.datagen = ImageDataGenerator(rescale=1. / 255., validation_split=0.25)
|
||||
self.loaded_model.compile(optimizers.rmsprop(lr=0.0005, decay=1e-6), loss="categorical_crossentropy",
|
||||
metrics=["accuracy"])
|
||||
self.loaded_model.summary()
|
||||
|
||||
@staticmethod
|
||||
def create_spectrogram(wav_filename: str) -> Tuple[str, str]:
|
||||
matplotlib.pyplot.interactive(False)
|
||||
clip, sample_rate = librosa.load(wav_filename, sr=None)
|
||||
fig = matplotlib.pyplot.figure(figsize=[0.72, 0.72])
|
||||
ax = fig.add_subplot(111)
|
||||
ax.axes.get_xaxis().set_visible(False)
|
||||
ax.axes.get_yaxis().set_visible(False)
|
||||
ax.set_frame_on(False)
|
||||
spectogram = librosa.feature.melspectrogram(y=clip, sr=sample_rate)
|
||||
librosa.display.specshow(librosa.power_to_db(spectogram, ref=numpy.max))
|
||||
|
||||
target_dir = tempfile.mkdtemp()
|
||||
|
||||
# Change extension to jpg... mert 110% biztos vagyok benne hogy a keras nem bírná beolvasni máshogy
|
||||
file_name = os.path.join(target_dir, "unknown", f"{wav_filename[:-4]}.jpg")
|
||||
|
||||
matplotlib.pyplot.savefig(file_name, dpi=400, bbox_inches='tight', pad_inches=0)
|
||||
matplotlib.pyplot.close()
|
||||
fig.clf()
|
||||
matplotlib.pyplot.close(fig)
|
||||
matplotlib.pyplot.close('all')
|
||||
|
||||
return target_dir, file_name
|
||||
|
||||
def _run_predictor(self, directory: str) -> list:
|
||||
predict_generator = self.datagen.flow_from_directory(
|
||||
directory=directory,
|
||||
batch_size=128,
|
||||
seed=42,
|
||||
shuffle=False,
|
||||
class_mode="categorical",
|
||||
target_size=(64, 64))
|
||||
|
||||
prediction = self.loaded_model.predict_generator(predict_generator, steps=1)
|
||||
|
||||
predicted_class_indices = numpy.argmax(prediction, axis=1)
|
||||
|
||||
labels = {
|
||||
'anser': 0,
|
||||
'columba': 1,
|
||||
'hirundo': 2,
|
||||
'passer': 3,
|
||||
'sturnus': 4,
|
||||
'turdus': 5,
|
||||
'upupa': 6
|
||||
}
|
||||
labels = dict((v, k) for k, v in labels.items())
|
||||
|
||||
predictions = [labels[k] for k in predicted_class_indices]
|
||||
|
||||
return predictions
|
||||
|
||||
def predict(self, wav_filename: str) -> list:
|
||||
directory, _ = self.create_spectrogram(wav_filename)
|
||||
|
||||
result = self._run_predictor(directory)
|
||||
shutil.rmtree(directory) # The image is no longer needed
|
||||
|
||||
return result
|
57
cnn_classification_service/main.py
Normal file
57
cnn_classification_service/main.py
Normal file
@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env python3
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import pika
|
||||
import json
|
||||
|
||||
from sentry_sdk.integrations.logging import LoggingIntegration
|
||||
import sentry_sdk
|
||||
|
||||
from cnn_classifier import Classifier
|
||||
|
||||
|
||||
def message_callback(ch, method, properties, body):
|
||||
msg = json.loads(body.decode('utf-8'))
|
||||
# TODO
|
||||
|
||||
|
||||
def main():
|
||||
logging.basicConfig(filename="", format="%(asctime)s - %(name)s [%(levelname)s]: %(message)s",
|
||||
level=logging.DEBUG if '--debug' in sys.argv else logging.INFO)
|
||||
|
||||
SENTRY_DSN = os.environ.get("SENTRY_DSN")
|
||||
if SENTRY_DSN:
|
||||
sentry_logging = LoggingIntegration(
|
||||
level=logging.DEBUG, # Capture info and above as breadcrumbs
|
||||
event_level=logging.ERROR # Send errors as events
|
||||
)
|
||||
sentry_sdk.init(
|
||||
dsn=SENTRY_DSN,
|
||||
integrations=[sentry_logging],
|
||||
send_default_pii=True,
|
||||
release=os.environ.get('RELEASE_ID', 'test'),
|
||||
environment=os.environ.get('RELEASEMODE', 'dev')
|
||||
)
|
||||
|
||||
logging.info("Connecting to MQ service...")
|
||||
connection = pika.BlockingConnection(pika.connection.URLParameters(os.environ['PIKA_URL']))
|
||||
channel = connection.channel()
|
||||
channel.exchange_declare(exchange=os.environ['PIKA_EXCHANGE_NAME'], exchange_type='fanout')
|
||||
|
||||
queue_declare_result = channel.queue_declare(queue='', exclusive=True)
|
||||
queue_name = queue_declare_result.method.queue
|
||||
|
||||
channel.queue_bind(exchange=os.environ['PIKA_EXCHANGE_NAME'], queue=queue_name)
|
||||
channel.basic_consume(queue=queue_name, on_message_callback=message_callback, auto_ack=True)
|
||||
|
||||
logging.info("Connection complete! Listening to messages...")
|
||||
try:
|
||||
channel.start_consuming()
|
||||
except KeyboardInterrupt:
|
||||
logging.info("SIGINT Received! Stopping stuff...")
|
||||
channel.stop_consuming()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user