initial commit
This commit is contained in:
commit
fcef542a7c
133
.gitignore
vendored
Normal file
133
.gitignore
vendored
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
#Pycharm
|
||||||
|
.idea/
|
||||||
|
*.iml
|
87
cnn_classification_service/cnn_clasifier.py
Normal file
87
cnn_classification_service/cnn_clasifier.py
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
from typing import Tuple
|
||||||
|
import tempfile
|
||||||
|
import os
|
||||||
|
import os.path
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
import librosa
|
||||||
|
import librosa.display
|
||||||
|
import numpy
|
||||||
|
import matplotlib.pyplot
|
||||||
|
from keras.models import model_from_json
|
||||||
|
from keras import optimizers
|
||||||
|
from keras_preprocessing.image import ImageDataGenerator
|
||||||
|
|
||||||
|
|
||||||
|
class Classifier(object):
|
||||||
|
|
||||||
|
def __init__(self, model_filename: str, weights_filename: str):
|
||||||
|
with open(model_filename, 'r') as f:
|
||||||
|
self.loaded_model = model_from_json(f.read())
|
||||||
|
|
||||||
|
self.loaded_model.load_weights(weights_filename)
|
||||||
|
self.datagen = ImageDataGenerator(rescale=1. / 255., validation_split=0.25)
|
||||||
|
self.loaded_model.compile(optimizers.rmsprop(lr=0.0005, decay=1e-6), loss="categorical_crossentropy",
|
||||||
|
metrics=["accuracy"])
|
||||||
|
self.loaded_model.summary()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_spectrogram(wav_filename: str) -> Tuple[str, str]:
|
||||||
|
matplotlib.pyplot.interactive(False)
|
||||||
|
clip, sample_rate = librosa.load(wav_filename, sr=None)
|
||||||
|
fig = matplotlib.pyplot.figure(figsize=[0.72, 0.72])
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
ax.axes.get_xaxis().set_visible(False)
|
||||||
|
ax.axes.get_yaxis().set_visible(False)
|
||||||
|
ax.set_frame_on(False)
|
||||||
|
spectogram = librosa.feature.melspectrogram(y=clip, sr=sample_rate)
|
||||||
|
librosa.display.specshow(librosa.power_to_db(spectogram, ref=numpy.max))
|
||||||
|
|
||||||
|
target_dir = tempfile.mkdtemp()
|
||||||
|
|
||||||
|
# Change extension to jpg... mert 110% biztos vagyok benne hogy a keras nem bírná beolvasni máshogy
|
||||||
|
file_name = os.path.join(target_dir, "unknown", f"{wav_filename[:-4]}.jpg")
|
||||||
|
|
||||||
|
matplotlib.pyplot.savefig(file_name, dpi=400, bbox_inches='tight', pad_inches=0)
|
||||||
|
matplotlib.pyplot.close()
|
||||||
|
fig.clf()
|
||||||
|
matplotlib.pyplot.close(fig)
|
||||||
|
matplotlib.pyplot.close('all')
|
||||||
|
|
||||||
|
return target_dir, file_name
|
||||||
|
|
||||||
|
def _run_predictor(self, directory: str) -> list:
|
||||||
|
predict_generator = self.datagen.flow_from_directory(
|
||||||
|
directory=directory,
|
||||||
|
batch_size=128,
|
||||||
|
seed=42,
|
||||||
|
shuffle=False,
|
||||||
|
class_mode="categorical",
|
||||||
|
target_size=(64, 64))
|
||||||
|
|
||||||
|
prediction = self.loaded_model.predict_generator(predict_generator, steps=1)
|
||||||
|
|
||||||
|
predicted_class_indices = numpy.argmax(prediction, axis=1)
|
||||||
|
|
||||||
|
labels = {
|
||||||
|
'anser': 0,
|
||||||
|
'columba': 1,
|
||||||
|
'hirundo': 2,
|
||||||
|
'passer': 3,
|
||||||
|
'sturnus': 4,
|
||||||
|
'turdus': 5,
|
||||||
|
'upupa': 6
|
||||||
|
}
|
||||||
|
labels = dict((v, k) for k, v in labels.items())
|
||||||
|
|
||||||
|
predictions = [labels[k] for k in predicted_class_indices]
|
||||||
|
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
def predict(self, wav_filename: str) -> list:
|
||||||
|
directory, _ = self.create_spectrogram(wav_filename)
|
||||||
|
|
||||||
|
result = self._run_predictor(directory)
|
||||||
|
shutil.rmtree(directory) # The image is no longer needed
|
||||||
|
|
||||||
|
return result
|
57
cnn_classification_service/main.py
Normal file
57
cnn_classification_service/main.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import pika
|
||||||
|
import json
|
||||||
|
|
||||||
|
from sentry_sdk.integrations.logging import LoggingIntegration
|
||||||
|
import sentry_sdk
|
||||||
|
|
||||||
|
from cnn_classifier import Classifier
|
||||||
|
|
||||||
|
|
||||||
|
def message_callback(ch, method, properties, body):
|
||||||
|
msg = json.loads(body.decode('utf-8'))
|
||||||
|
# TODO
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
logging.basicConfig(filename="", format="%(asctime)s - %(name)s [%(levelname)s]: %(message)s",
|
||||||
|
level=logging.DEBUG if '--debug' in sys.argv else logging.INFO)
|
||||||
|
|
||||||
|
SENTRY_DSN = os.environ.get("SENTRY_DSN")
|
||||||
|
if SENTRY_DSN:
|
||||||
|
sentry_logging = LoggingIntegration(
|
||||||
|
level=logging.DEBUG, # Capture info and above as breadcrumbs
|
||||||
|
event_level=logging.ERROR # Send errors as events
|
||||||
|
)
|
||||||
|
sentry_sdk.init(
|
||||||
|
dsn=SENTRY_DSN,
|
||||||
|
integrations=[sentry_logging],
|
||||||
|
send_default_pii=True,
|
||||||
|
release=os.environ.get('RELEASE_ID', 'test'),
|
||||||
|
environment=os.environ.get('RELEASEMODE', 'dev')
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Connecting to MQ service...")
|
||||||
|
connection = pika.BlockingConnection(pika.connection.URLParameters(os.environ['PIKA_URL']))
|
||||||
|
channel = connection.channel()
|
||||||
|
channel.exchange_declare(exchange=os.environ['PIKA_EXCHANGE_NAME'], exchange_type='fanout')
|
||||||
|
|
||||||
|
queue_declare_result = channel.queue_declare(queue='', exclusive=True)
|
||||||
|
queue_name = queue_declare_result.method.queue
|
||||||
|
|
||||||
|
channel.queue_bind(exchange=os.environ['PIKA_EXCHANGE_NAME'], queue=queue_name)
|
||||||
|
channel.basic_consume(queue=queue_name, on_message_callback=message_callback, auto_ack=True)
|
||||||
|
|
||||||
|
logging.info("Connection complete! Listening to messages...")
|
||||||
|
try:
|
||||||
|
channel.start_consuming()
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
logging.info("SIGINT Received! Stopping stuff...")
|
||||||
|
channel.stop_consuming()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
10
requirements.txt
Normal file
10
requirements.txt
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
sentry_sdk
|
||||||
|
pika
|
||||||
|
requests
|
||||||
|
|
||||||
|
|
||||||
|
librosa
|
||||||
|
keras
|
||||||
|
numpy
|
||||||
|
matplotlib
|
||||||
|
keras_preprocessing
|
Loading…
Reference in New Issue
Block a user