49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
import thinkdsp
|
|
|
|
|
|
|
|
|
|
#segment: ebben a hangmintaban keressuk az eredeti hangmintaval "original_sample" leginkabb korrelalo reszt
|
|
#original_sample: az eredeti madarhang minta
|
|
# A fuggveny a bemeneti hangmintat mintavetelenkent osszehasonlitja az altalunk keresett hangmintaval es vissza adja annak
|
|
# a maximalis korrelaciot.
|
|
def calculatecorr(segment,original_sample):
|
|
maxcorr = 0
|
|
time = 0
|
|
#1minta 1 masodperc(framerate szama = utolso elem)
|
|
lastsample = segment.framerate
|
|
for timestamp in segment.ts[:-lastsample]:
|
|
#mindig az adott mintaveteltol szamitott 1mp-es mintat vesszuk
|
|
segment_chunk = segment.segment(start=timestamp, duration=1)
|
|
#Correlation coefficient two waves.
|
|
correlation = original_sample.corr(segment_chunk)
|
|
if correlation > maxcorr :
|
|
maxcorr = correlation
|
|
time = timestamp
|
|
print(correlation)
|
|
if maxcorr > 0.9:
|
|
return maxcorr
|
|
break
|
|
|
|
print("Vegeredmeny:")
|
|
print(maxcorr)
|
|
print("Masodperc:")
|
|
print(time)
|
|
return maxcorr
|
|
|
|
|
|
|
|
|
|
sturnusVulgaris = thinkdsp.read_wave("wavs/sturnus/CommonStarling_100962.wav")
|
|
train_sample = sturnusVulgaris.segment(start=4,duration=1)
|
|
test_sample = sturnusVulgaris.segment(start=0,duration=5)
|
|
|
|
|
|
calculatecorr(test_sample,train_sample)
|
|
|
|
|
|
|