209 lines
8.8 KiB
Java
209 lines
8.8 KiB
Java
|
import java.io.FileReader;
|
||
|
import java.text.DateFormat;
|
||
|
import java.text.SimpleDateFormat;
|
||
|
import java.util.Calendar;
|
||
|
import java.util.Date;
|
||
|
import java.util.concurrent.TimeUnit;
|
||
|
|
||
|
import org.json.simple.JSONObject;
|
||
|
import org.json.simple.parser.JSONParser;
|
||
|
|
||
|
import weka.classifiers.Evaluation;
|
||
|
import weka.classifiers.bayes.NaiveBayes;
|
||
|
import weka.classifiers.functions.LinearRegression;
|
||
|
import weka.classifiers.functions.MultilayerPerceptron;
|
||
|
import weka.classifiers.functions.SMO;
|
||
|
import weka.classifiers.functions.SMOreg;
|
||
|
import weka.core.Instances;
|
||
|
import weka.core.converters.ConverterUtils.DataSource;
|
||
|
|
||
|
public class WekaModelCreator {
|
||
|
private static final String[] targets = {"edge","cloud_rsu","cloud_gsm"};
|
||
|
|
||
|
public static void main(String[] args) throws Exception {
|
||
|
String dataPath = "";
|
||
|
String classifier = "";
|
||
|
String regressor = "";
|
||
|
|
||
|
JSONParser parser = new JSONParser();
|
||
|
try
|
||
|
{
|
||
|
Object object = parser.parse(new FileReader(args[0]));
|
||
|
|
||
|
//convert Object to JSONObject
|
||
|
JSONObject jsonObject = (JSONObject)object;
|
||
|
|
||
|
//Reading the String
|
||
|
dataPath = (String) jsonObject.get("sim_result_folder");
|
||
|
classifier = (String) jsonObject.get("classifier");
|
||
|
regressor = (String) jsonObject.get("regressor");
|
||
|
}
|
||
|
catch(Exception e)
|
||
|
{
|
||
|
e.printStackTrace();
|
||
|
System.exit(1);
|
||
|
}
|
||
|
|
||
|
System.out.println("######### TRAINING FOR " + dataPath + " #########");
|
||
|
for(int i=0; i<targets.length; i++) {
|
||
|
handleClassify("train", targets[i], classifier, dataPath);
|
||
|
handleRegression("train", targets[i], regressor, dataPath);
|
||
|
}
|
||
|
|
||
|
System.out.println("######### EVALUATION FOR " + dataPath + " #########");
|
||
|
for(int i=0; i<targets.length; i++) {
|
||
|
handleClassify("evaluate", targets[i], classifier, dataPath);
|
||
|
handleRegression("evaluate", targets[i], regressor, dataPath);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void handleRegression(String action, String target, String method, String dataFolder) throws Exception {
|
||
|
if(action.equals("train")) {
|
||
|
DateFormat df = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");
|
||
|
Date startDate = Calendar.getInstance().getTime();
|
||
|
String now = df.format(startDate);
|
||
|
System.out.println("Training " + method + " for " + target + " started at " + now);
|
||
|
|
||
|
DataSource edgeRegressionSource = new DataSource(dataFolder + "/" + target + "_regression_train.arff");
|
||
|
Instances edgeRegressionDataset = edgeRegressionSource.getDataSet();
|
||
|
edgeRegressionDataset.setClassIndex(edgeRegressionDataset.numAttributes()-1);
|
||
|
|
||
|
if(method.equals("LinearRegression")) {
|
||
|
LinearRegression lr = new LinearRegression();
|
||
|
lr.buildClassifier(edgeRegressionDataset);
|
||
|
weka.core.SerializationHelper.write(dataFolder + "/lr_" + target + ".model", lr);
|
||
|
}
|
||
|
else if(method.equals("SMOreg")) {
|
||
|
SMOreg smoreg = new SMOreg();
|
||
|
smoreg.buildClassifier(edgeRegressionDataset);
|
||
|
weka.core.SerializationHelper.write(dataFolder + "/smoreg_" + target + ".model", smoreg);
|
||
|
}
|
||
|
|
||
|
Date endDate = Calendar.getInstance().getTime();
|
||
|
now = df.format(endDate);
|
||
|
System.out.println("Training " + method + " for " + target + " fisished at " + now + ". It took " + getTimeDifference(startDate, endDate));
|
||
|
}
|
||
|
else if(action.equals("evaluate")) {
|
||
|
System.out.println("Evaluation " + method + " for " + target + " started");
|
||
|
|
||
|
DataSource edgeRegressionSource = new DataSource(dataFolder + "/" + target + "_regression_test.arff");
|
||
|
Instances edgeRegressionDataset = edgeRegressionSource.getDataSet();
|
||
|
edgeRegressionDataset.setClassIndex(edgeRegressionDataset.numAttributes()-1);
|
||
|
|
||
|
if(method.equals("LinearRegression")) {
|
||
|
LinearRegression lr = (LinearRegression) weka.core.SerializationHelper.read(dataFolder + "/lr_" + target + ".model");
|
||
|
Evaluation lrEval = new Evaluation(edgeRegressionDataset);
|
||
|
lrEval.evaluateModel(lr, edgeRegressionDataset);
|
||
|
System.out.println("LinearRegression");
|
||
|
System.out.println(lrEval.toSummaryString());
|
||
|
}
|
||
|
else if(method.equals("SMOreg")) {
|
||
|
SMOreg smoreg = (SMOreg) weka.core.SerializationHelper.read(dataFolder + "/smoreg_" + target + ".model");
|
||
|
Evaluation svmregEval = new Evaluation(edgeRegressionDataset);
|
||
|
svmregEval.evaluateModel(smoreg, edgeRegressionDataset);
|
||
|
System.out.println("SMOreg");
|
||
|
System.out.println(svmregEval.toSummaryString());
|
||
|
}
|
||
|
|
||
|
System.out.println("Evaluation " + method + " for " + target + " fisished");
|
||
|
System.out.println("");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void handleClassify(String action, String target, String method, String dataFolder) throws Exception {
|
||
|
if(action.equals("train")) {
|
||
|
DateFormat df = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");
|
||
|
Date startDate = Calendar.getInstance().getTime();
|
||
|
String now = df.format(startDate);
|
||
|
System.out.println("Training " + method + " for " + target + " started at " + now);
|
||
|
|
||
|
DataSource classifierSource = new DataSource(dataFolder + "/" + target + "_classifier_train.arff");
|
||
|
Instances classifierDataset = classifierSource.getDataSet();
|
||
|
classifierDataset.setClassIndex(classifierDataset.numAttributes()-1);
|
||
|
|
||
|
if(method.equals("NaiveBayes")) {
|
||
|
NaiveBayes nb = new NaiveBayes();
|
||
|
nb.buildClassifier(classifierDataset);
|
||
|
weka.core.SerializationHelper.write(dataFolder + "/nb_" + target + ".model", nb);
|
||
|
}
|
||
|
else if(method.equals("SMO")) {
|
||
|
SMO smo = new SMO();
|
||
|
smo.buildClassifier(classifierDataset);
|
||
|
weka.core.SerializationHelper.write(dataFolder + "/smo_" + target + ".model", smo);
|
||
|
}
|
||
|
else if(method.equals("MultilayerPerceptron")) {
|
||
|
MultilayerPerceptron mlp = new MultilayerPerceptron();
|
||
|
mlp.setLearningRate(0.1);
|
||
|
//mlp.setMomentum(0.2);
|
||
|
mlp.setTrainingTime(1000);
|
||
|
//mlp.setHiddenLayers("3");
|
||
|
mlp.buildClassifier(classifierDataset);
|
||
|
weka.core.SerializationHelper.write(dataFolder + "/mlp_" + target + ".model", mlp);
|
||
|
}
|
||
|
|
||
|
Date endDate = Calendar.getInstance().getTime();
|
||
|
now = df.format(endDate);
|
||
|
System.out.println("Training " + method + " for " + target + " fisished at " + now + ". It took " + getTimeDifference(startDate, endDate));
|
||
|
}
|
||
|
else if(action.equals("evaluate")) {
|
||
|
System.out.println("Evaluation " + method + " for " + target + " started");
|
||
|
|
||
|
DataSource edgeClassifierSource = new DataSource(dataFolder + "/" + target + "_classifier_test.arff");
|
||
|
Instances classifierDataset = edgeClassifierSource.getDataSet();
|
||
|
classifierDataset.setClassIndex(classifierDataset.numAttributes()-1);
|
||
|
|
||
|
if(method.equals("NaiveBayes")) {
|
||
|
NaiveBayes nb = (NaiveBayes) weka.core.SerializationHelper.read(dataFolder + "/nb_" + target + ".model");
|
||
|
Evaluation nbEval = new Evaluation(classifierDataset);
|
||
|
nbEval.evaluateModel(nb, classifierDataset);
|
||
|
System.out.println(nbEval.toSummaryString());
|
||
|
System.out.println(nbEval.toMatrixString());
|
||
|
System.out.println(nbEval.toClassDetailsString());
|
||
|
}
|
||
|
else if(method.equals("SMO")) {
|
||
|
SMO smo = (SMO) weka.core.SerializationHelper.read(dataFolder + "/smo_" + target + ".model");
|
||
|
Evaluation smoEval = new Evaluation(classifierDataset);
|
||
|
smoEval.evaluateModel(smo, classifierDataset);
|
||
|
System.out.println(smoEval.toSummaryString());
|
||
|
System.out.println(smoEval.toMatrixString());
|
||
|
System.out.println(smoEval.toClassDetailsString());
|
||
|
}
|
||
|
else if(method.equals("MultilayerPerceptron")) {
|
||
|
MultilayerPerceptron mlp = (MultilayerPerceptron) weka.core.SerializationHelper.read(dataFolder + "/mlp_" + target + ".model");
|
||
|
Evaluation mlpEval = new Evaluation(classifierDataset);
|
||
|
mlpEval.evaluateModel(mlp, classifierDataset);
|
||
|
System.out.println(mlpEval.toSummaryString());
|
||
|
System.out.println(mlpEval.toMatrixString());
|
||
|
System.out.println(mlpEval.toClassDetailsString());
|
||
|
}
|
||
|
|
||
|
System.out.println("Evaluation " + method + " for " + target + " fisished");
|
||
|
System.out.println("");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private static String getTimeDifference(Date startDate, Date endDate){
|
||
|
String result = "";
|
||
|
long duration = endDate.getTime() - startDate.getTime();
|
||
|
|
||
|
long diffInMilli = TimeUnit.MILLISECONDS.toMillis(duration);
|
||
|
long diffInSeconds = TimeUnit.MILLISECONDS.toSeconds(duration);
|
||
|
long diffInMinutes = TimeUnit.MILLISECONDS.toMinutes(duration);
|
||
|
long diffInHours = TimeUnit.MILLISECONDS.toHours(duration);
|
||
|
long diffInDays = TimeUnit.MILLISECONDS.toDays(duration);
|
||
|
|
||
|
if(diffInDays>0)
|
||
|
result += diffInDays + ((diffInDays>1 == true) ? " Days " : " Day ");
|
||
|
if(diffInHours>0)
|
||
|
result += diffInHours % 24 + ((diffInHours>1 == true) ? " Hours " : " Hour ");
|
||
|
if(diffInMinutes>0)
|
||
|
result += diffInMinutes % 60 + ((diffInMinutes>1 == true) ? " Minutes " : " Minute ");
|
||
|
if(diffInSeconds>0)
|
||
|
result += diffInSeconds % 60 + ((diffInSeconds>1 == true) ? " Seconds" : " Second");
|
||
|
if(diffInMilli>0 && result.isEmpty())
|
||
|
result += diffInMilli + ((diffInMilli>1 == true) ? " Milli Seconds" : " Milli Second");
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
}
|