\chapter{M\'er\'esi eredm\'enyek ismertet\'ese} Mielőtt elkezdtem a Knative és Kubeless rendszerek mérését, annak érdekében, hogy a mérőeszközök, illetve a Knative-hoz készített függvények teljesítményét kimérjem, mindkét mérőeszközzel megmértem mindkét függvényt Docker konténerként indítva. Itt a függvények a harmadik, a Kubernetes klaszterbe be nem csatlakoztatott számítógépen futottak a függvények, a mérések pedig az Kubernetes Masteren futottak. Mind a négy mérés esetében a használt connection objektumok száma negyvenöt. %TODO %TODO A két ábrából látszik, hogy a várakozásokkal ellentétben a Jmeter jobban teljesített, mint a hey. Ez azért van, mert a hey-re megszabtam connection objektumomként ötszáz kérés per másodperces korlátot. Erre a számra úgy jutottam, hogy a hey által használt connection objektumok számát egyre állítottam. Ez esetben a generált kérések száma másodpercenként 510 és 530 között ingadozott, viszont stabilan mindig 500 felett volt. A generált forgalom stabilizálása érdekében az 500-nál húztam meg a határt, melynek szükségességét a korábbi tapasztalatok alapján éreztem, ugyanis a hey teljesítménye megfigyeléseim szerint instabil, mikor nagy sebességgel kell generálja a kéréseket. Továbbá, úgy ítéltem, hogy két különbözően viselkedő mérőeszköz többet fed fel a skálázódási mechanizmusokról. Az ábrákról szintén látszik, hogy a prím számoló függvény teljesítménye alulmarad a kis számításigényű függvényhez képest. Ez az előzetes várakozások szerint alakult. Mivel a Kubeless egy teljes Function as a Service rendszer, az oda telep\'it\'esre sz\'ant f\"uggv\'enyeket csak a rendszerbe telep\'itve lehet futtatni. %TODO Coldstart Érdekes jelenség, hogy a Jmeter által mért teljesítmény sokkal stabilabb. Igaz, hogy ez esetben nincs szükség a mérést fél perces szegmensekre bontani. Különösen furcsa a hey viselkedése, ugyanis a hiszterézis akkor nem volt megfigyelhető, ha a függvényt közvetlen Dockerben futtattam. Emiatt használatát nem vetettem el, de az általa mért feldolgozott kérési rátát fenntartással kezeltem. %TODO %TODO A fenti ábrákon látható a Knative-ba telepített echo típusú függvény skálázódása. A kettő közül először az alsó mérést végeztem el, ahol a hey instabil viselkedése szintén megfigyelhető. A mérés körülbelül felénél látható megemelkedett ráta konzisztensen megismételhető volt több, független Kubernetes klaszteren is. Az ábrák elején jól megfigyelhető a Knative pánik skálázása, amely gyorsan létrehoz öt Podot, majd a hatvan másodperces panic windows lejárta után a már nem szükséges podokat leállítja. Az ezután a Podok számában megfigyelhető hiszterézis a Jmeteres ábrán és egyéb Jmeteres mérések során nem volt tapasztalható. Ez betudható annak, hogy az ObservedStableConcurrency érték a döntési határértéken van. Szintén megfigyelhető, hogy a Podok kiszámításának korábban ismertetett formulája úgy tűnik nem volt helyes. Ez nem helyes következtetés, ugyanis a hey ábrán látható három, valamint a Jmeter ábrán látható kettő kiszámított Podszámhoz hozzáadódik az egy mindig létező Pod. Az ObservedStableConcurrency érték esése a Jmeter ábra esetén is látható, amire a Podok számának csökkentésével reagál a rendszer. Érdekes, hogy itt mind a Podok száma, mint az ObservedStableConcurrency sokkal stabilabbak, cserébe alacsonyabbak. Szintén különbség, hogy a hey esetében a mérés elején tapasztalható alacsony teljesítményű időszak időben hasonló, viszont nincs benne ugrás. Mindkét ábrán látszik, hogy az ObservedStableConcurrency érték mozgó átlag, emiatt lassan változik. Ennek következménye, hogy a terhelés megszűnése után nem szűnnek meg a létrehozott Podok. A mérések alapján kíváncsi voltam, mi történik, ha alacsonyabb áteresztőképességű függvényre generált terhelés esetében vizsgálom meg a Knative belső működését. %TODO %TODO A fenn látható két ábrán látható függvény teljesítményének karakterisztikája teljesen más, mint az echo típusú függvényé. Olyan szempontból hasonlítanak, hogy kell idő mindkét függvénynek, hogy a teljesítménye elérje a stabil értéket, viszont ellentétben az echo típusú függvénnyel, ezt nem egyik másodpercről a másikra teszi a prímszámoló függvény, hanem folyamatosan. Az ObservedStableConcurrency viszont a várakozásoknak nem megfelelően alakult. Intuíció alapján azt vártam el, hogy hasonló terhelés és kisebb áteresztő képesség miatt ez az érték megemelkedik, aminek következtében aztán a Podok száma is megnő. Ennek viszont az ellenkezője történt. Az alacsonyabb áteresztő képesség ellenére az ObservedStableConcurrency is alacsonyabb volt, így a Podok száma is alacsonyabb maradt. Ez betudható annak, hogy amíg a függvény vissza nem tér, foglalja az adott connection objektumot, amely meghívta. %TODO A fenti ábrán látható az echo típusú függvényre egyre növekvő terhelés, valamint a Knative Autoscaler rendszer e mérés alatti belső állapota. A terhelés növelését a hey mérőeszközben egyre több connection objektum használta által értem el. Jól látszik, hogy az ObservedStableConcurrency egy lassan változó érték, a mérés végére töredékét érte el annak az értéknek, amit az egyenletes terhelésű mérések során elért. Szintén látható a Podok számából, hogy pánik állapotot sem váltott ki a mérés. Erre nem is lehetett számítani, hiszen a használt konkurencia érték sosem növekedett duplájára hat másodperces időtartam alatt. %TODO A korábbi mérések alapján számítottam rá, hogy a prímszámoló függvény újból máshogy fog viselkedni, de a csalódnom kellett, ugyanis a gyengébb csúcsteljesítményen kívül egyéb különbség nem figyelhető meg a két függvény típusa között. %TODO Mivel a Knative és Kubeless rendszerek másik Ingress Controllert használtak, szerettem volna kimérni ezek áteresztőképességét is. Ezt úgy vittem véghez, hogy a mérőeszközzel mindkét Ingress Controller végpontját megcéloztam, mint ahogyan azt a függvények teljesítményének mérésénél is tettem, viszont ez esetben általuk nem ismert hosztnév fejlécet adtam meg. Ez által minden kérésre 404-es http kóddal válaszoltak. A fenti ábrákon látható teljesítmény az adott Ingress Controllerek által elérhető legjobb teljesítmény. A Kubeless által használt Nginx Ingress Controller teljesítménye majdnem négyszeresen meghaladja a Knative által használt Isitio. %TODO Ahogy az az ábrán látszik, a Kubeless skálázódása teljesen máshogy működik. Ez esetben a kötelezően meghatározott cpu használati limit miatt a skálázódáson a teljesítményben is érzékelhető a több Pod használata. Szintén látszik, hogy a csúcsteljesítmény, amit elért magasabb, mint a Knative esetében. Cserébe, viszont a skálázódás lassabb, a Horizontal Pod Autoscaler hatvan másodperces átlagolása miatt. %TODO Sajnos, a Kubeless esetében többször előfordult, hogy csak egy Podot hozott létre az egész mérés során. Ez nem függött attól, hogy mennyi ideig tartott a mérés. Miután véget ért a terhelés, rövid időn belül létre jött a következő Pod. Ennek okát próbáltam kideríteni, egyik hipotézisem az volt, hogy nincs elég cpu ideje a számítógépnek létrehozni a Podot, de ezt kézi megfigyeléseim során elvetettem. Másik probléma a Kubeless esetében, hogy az Nginx Ingress Controller minden beérkező kérésről naplóbejegyzést ír. Ennek következményeképp a Podja Evictelődik, mert túl sok tárterületet használ. Erre a problémára több megoldási lehetőség létezik, viszont egyik sem tökéletes. Egy lehetőség a konténerek kézi (vagy akár automatizált) naplójainak rotációja. Ez azért nem jó megoldás, mert nem csak a függvény podok kerülnek evicted állapotba, hanem akár a network plugin által használt Pod, hiszen a monitorozó rendszer minden Podtól lekérdezi az adatait, valamint a Kubernetes minden Podot evicted állapotba tesz, ha túl sok ephemeral storage-ot használ. Ennél létezik egyszerűbb megoldás, ami jobb lehetőségnek tűnik. Ez a Docker logrendszerének átkonfigurálása, hogy ne a konténer fájljai között, json formátumban naplózzon, hanem például használja a gazda gép journald rendszer szolgáltatását. Ez meg is oldotta ezt a problémát, viszont felvetett egy másikat. Bár a naplóbejegyzések már nem kerülnek a konténerek mellé, valahol a fájlrendszeren kerülnek tárolásra, ahol egy idő után ugyan tömörítésre kerülnek, de addig jelentős helyet foglalnak a mérésből és a monitorozásból adódó bejegyzések. Ennek eredményeként a Kubernetes worker node-okon DiskPreassure állapot léphet fel, amely azt jelenti, hogy az adott Node fájlrendszerén kevés a fennmaradt szabad hely. Ez a szabály vonatkozik a Node root partíciójára, valamint a Docker konténereket tároló partícióra is. Ekkor a Node-on lévő Podok kerülhetnek evicted állapotba, a Kubernetes megpróbálja azokat újraindítani, viszont ez már új konténer létrehozását jelenti. Erre két megoldási lehetőség létezik. Vagy a problémás Node kubelet konfigurációját átállítjuk, hogy a DiskPreassure állapot később lépjen fel, ezzel viszont csak elnapoltuk a problémát. Másik lehetőség a naplófájlok gyorsabb rotációja, illetve a Docker konténerek külön partíción tárolása, de ez esetben csak lelassítottuk a problémát. Az igazi megoldás a kettő módszer ötvözése. Naplóbejegyzések mindenképpen generálódni fognak, ezt megakadályozni nem tudjuk és nem is érdekünk, hiszen bármi probléma adódik, a naplóbejegyzések jelentős segítséget nyújtanak a diagnózisban, valamint akár a probléma megoldásában is segíthetnek. Annak érdekében, hogy a Knative-ba telepített függvények skálázódása az általuk nyújtott teljesítményben is meglátszódjon, szerettem volna limitálni egy-egy Pod teljesítményét. Erre viszont a Knative által létrehozott objektum típusok esetében nincs lehetőség. Emiatt úgy döntöttem, hogy a Knative által létrehozott Kubernetes Deployment objektumot módosítom, ott hozom létre a limiteket. Ez sikerült is, a függvény működött tovább, a megadott korlátozások érvénybe léptek. Viszont az elvárások nem teljesültek, a Podok létrejöttével nem emelkedett meg a függvény teljesítménye. A lenti diagrammon látszik, hogy a függvény végig ezer kérést volt képes kiszolgálni másodpercenként. Korábbi mérések során a prímszámoló függvény egy Python folyamatot használva nyolcszáz kérést szolgált ki másodpercenként. Tehát a mérés során létrejött öt Pod nagyjából négyezer kérést kellene kiszolgálnia másodpercenként az elvárásaink alapján. Ezzel szemben az egész mérés során olyan teljesítményt nyújt a függvény, melyet két Pod is ki tudna szolgálni. Kíváncsi voltam, egyes mérések során milyen belső állapotai vannak a Knative egyes alegységeinek. Azért, hogy ezeket megfigyelhessem, telepítettem a Knative Monitoring egységét. Ez után újra elvégeztem bizonyos méréseket. Először a prímszámoló függvény viselkedését vizsgáltam meg. Az első ábrán a Podok CPU használata látható. Érdekes, hogy a Workeren elérhető húsz magból összesen hetet sem használnak. A második ábrán látható, hogy a függvényt kiszolgáló Podok és a Knative rendszer processzorhasználata hogyan alakul egymáshoz képest. Érdekes, hogy együtt is csupán körülbelül tíz processzormagot használnak. A Control Plane az ábrán a Knative Serving egyes komponenseit, az Istio-t, a monitoring eszközöket és a Kubernetes beépített részeit jelenti. A lenti ábrán látható ezen komponensek között miként oszlik el a processzorhasználat. Látszik, hogy a Knative Serving komponense használja leginkább a processzort. A kubectl top parancsot használva azt is sikerült kideríteni, hogy pontosan az activator nevű komponens miatt emelkedik ki a Knative processzorhasználata. A Knative activator felel a metrik\'ak autoscaler fel\'e tov\'abb\'it\'as\'a\'ert, valamint inaktiv Revision-\"okh\"oz \'erkező k\'er\'esek bufferel\'es\'e\'ert. A Grafana által generált grafikonok egyikén megfigyelhető, hogy a pánik mód mikor kapcsolt be és meddig tartott. Ez a lenti grafikonon látszik. A pánik mód a specifikáltak szerint viselkedik, az xy ábrán az is látszik, miként alakult a Podok száma a mérés során. Másodikként az echo típusú függvény terhelése alatt vizsgáltam meg a Knative belső működését.