This commit is contained in:
parent
80a7557467
commit
09c991baf3
@ -16,7 +16,7 @@ class AbcPreProcessor(ABC):
|
||||
Abstract base class PreProcessor. Responsible for manipulating input data from a sensor.
|
||||
"""
|
||||
@abstractmethod
|
||||
def preprocesssignal(self, signal):
|
||||
def preprocesssignal(self, file_path) -> bool:
|
||||
"""
|
||||
Preprocess a signal.
|
||||
:return:
|
||||
|
@ -1,9 +1,15 @@
|
||||
#!/usr/bin/env python3
|
||||
import requests
|
||||
from pyAudioAnalysis import audioTrainTest as aT
|
||||
from pyAudioAnalysis.audioTrainTest import load_model, load_model_knn
|
||||
from pyAudioAnalysis.audioTrainTest import load_model, load_model_knn, classifier_wrapper
|
||||
from utils import config
|
||||
from .abcpreprocessor import AbcPreProcessor
|
||||
import tempfile
|
||||
import os
|
||||
import logging
|
||||
|
||||
from pyAudioAnalysis import audioBasicIO
|
||||
from pyAudioAnalysis import MidTermFeatures
|
||||
import numpy
|
||||
|
||||
"""
|
||||
Abstract base class for Sender
|
||||
@ -20,27 +26,91 @@ class SoundPreProcessor(AbcPreProcessor):
|
||||
SoundPreProcessor class, responsible for detecting birb chirps in sound sample.
|
||||
"""
|
||||
|
||||
def preprocesssignal(self, signal: str) -> bool:
|
||||
"""
|
||||
Classify a sound sample.
|
||||
:param signal: Access path of the sound sample up for processing.
|
||||
:return:
|
||||
"""
|
||||
# TODO: Dynamic model injection?
|
||||
r = requests.get(f"http://model-service/model/{config.MODEL_ID}/details")
|
||||
def __init__(self):
|
||||
logging.info("Downloading current model...")
|
||||
_, self._temp_model_name = tempfile.mkstemp()
|
||||
self._temp_means_name = self._temp_model_name + "MEANS"
|
||||
|
||||
logging.debug("Fetching model info...")
|
||||
r = requests.get(f"{config.API_URL}/model/$default/details")
|
||||
r.raise_for_status()
|
||||
|
||||
model_details = r.json()
|
||||
self._model_details = r.json()
|
||||
|
||||
if model_details['type'] == 'knn':
|
||||
classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
|
||||
= load_model_knn(config.MODEL_ID + "MEANS")
|
||||
logging.debug("Downloading model...")
|
||||
r = requests.get(f"{config.API_URL}/model/{self._model_details['id']}")
|
||||
r.raise_for_status()
|
||||
|
||||
with open(self._temp_model_name, 'wb') as f:
|
||||
f.write(r.content)
|
||||
|
||||
logging.debug("Downloading MEANS...")
|
||||
r = requests.get(f"{config.API_URL}/model/{self._model_details['id']}?means")
|
||||
r.raise_for_status()
|
||||
|
||||
with open(self._temp_means_name, 'wb') as f:
|
||||
f.write(r.content)
|
||||
|
||||
logging.info("Loading current model...")
|
||||
|
||||
if self._model_details['type'] == 'knn':
|
||||
self._classifier, self._mean, self._std, self._classes, \
|
||||
self._mid_window, self._mid_step, self._short_window, \
|
||||
self._short_step, self._compute_beat = load_model_knn(self._temp_model_name)
|
||||
|
||||
else:
|
||||
classifier, mean, std, classes, mid_window, mid_step, short_window, short_step, compute_beat \
|
||||
= load_model(config.MODEL_ID + "MEANS")
|
||||
self._classifier, self._mean, self._std, self._classes, \
|
||||
self._mid_window, self._mid_step, self._short_window, \
|
||||
self._short_step, self._compute_beat = load_model(self._temp_model_name)
|
||||
|
||||
target_id = classes.index(config.TARGET_NAME)
|
||||
def preprocesssignal(self, file_path: str) -> bool:
|
||||
"""
|
||||
Classify a sound sample.
|
||||
:param file_path: Access path of the sound sample up for processing.
|
||||
:return:
|
||||
"""
|
||||
logging.info("Running extraction...")
|
||||
|
||||
class_id, probability = aT.file_classification(signal, config.MODEL_ID, "svm")
|
||||
return class_id == target_id
|
||||
sampling_rate, signal = audioBasicIO.read_audio_file(file_path)
|
||||
signal = audioBasicIO.stereo_to_mono(signal)
|
||||
|
||||
if sampling_rate == 0:
|
||||
raise Exception("Could not read the file properly: Sampling rate zero")
|
||||
|
||||
if signal.shape[0] / float(sampling_rate) <= self._mid_window:
|
||||
raise Exception("Could not read the file properly: Signal shape is not good")
|
||||
|
||||
# feature extraction:
|
||||
mid_features, s, _ = \
|
||||
MidTermFeatures.mid_feature_extraction(signal, sampling_rate,
|
||||
self._mid_window * sampling_rate,
|
||||
self._mid_step * sampling_rate,
|
||||
round(sampling_rate * self._short_window),
|
||||
round(sampling_rate * self._short_step))
|
||||
|
||||
# long term averaging of mid-term statistics
|
||||
mid_features = mid_features.mean(axis=1)
|
||||
if self._compute_beat:
|
||||
beat, beat_conf = MidTermFeatures.beat_extraction(s, self._short_step)
|
||||
mid_features = numpy.append(mid_features, beat)
|
||||
mid_features = numpy.append(mid_features, beat_conf)
|
||||
|
||||
logging.info("Running classification...")
|
||||
|
||||
target_id = self._classes.index('chirp') # Might raise ValueError
|
||||
|
||||
feature_vector = (mid_features - self._mean) / self._std
|
||||
class_id, probability = classifier_wrapper(self._classifier, self._model_details['type'], feature_vector)
|
||||
|
||||
return bool(class_id == target_id)
|
||||
|
||||
def __del__(self):
|
||||
try:
|
||||
os.remove(self._temp_model_name)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
try:
|
||||
os.remove(self._temp_means_name)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user